On Even-Degree Splines with Application to Quadratures

M. N. El Tarazi and A. A. Karabali
Mathematics Department, Kuwait Lnitersity. P. O. Box 5969, Safat, 13060 Кичаі:
Communicated by R. Bojanic
Received February 1. 1988

Abstract

A class of splines of even degree $k=2 x$ and continuity order \mathscr{C}^{x} that match the derivatives up to order α at the knots of a uniform partition are studied for $x=1,2,3,4$, and 5 . The simple direct formulas obtained can be applied to quadratures. © 1990 Academic Press. Inc.

1. Introduction

Recently, El Tarazi and Sallam [3] have constructed an interpolatory quartic spline which matches the first and second derivatives of a given function at the knots.

In this paper we extend that work, studying a class of splines of even degree $k=2 x$ and continuity order \mathscr{C}^{α} that match the derivatives up to the order α at the knots of a uniform partition for $\alpha=1,2,3,4$, and 5 . The reason for restricting ourselves to even-degree splines is that the formulas obtained are explicit. There are no linear systems to solve.

In Section 2 we study the construction, existence, uniqueness, and error bounds for the proposed splines. In Section 3 some conjectures relating these different splines are stated. Finally, in Section 4 we apply these splines to quadratures. Both theory and numerical results show the method to be efficient.
2. Splines of Degree 2, 4, 6, 8, and 10

We construct here a class of interpolating splines of degree k, for $k=2,4,6,8$, and $10 . \mathscr{L}_{x}$ error estimates for these splines are also represented. Since all cases considered are similar, details are given only for the case of degree $k=6$.

Let $\left\{x_{i}, i=0,1, \ldots, N+1\right\}$ be a uniform partition of $[0,1]$. Set $h=x_{i+1}-x_{i}$ for $i=0,1, \ldots, N .\left(g_{i}^{(r)}\right.$ stands for $g^{(r)}\left(x_{i}\right), i=0,1, \ldots, N+1$ and $r=0,1, \ldots$) We have the following cases:

2.1. Spline of Degree 2

Given the real numbers $f_{i}^{\prime}(i=0,1, \ldots, N+1)$ and f_{0}, there exists a unique spline $s(x) \in \mathscr{C}^{1}[0,1]$ of degree 2 (a polynomial of degree 2 in each subinterval $\left[x_{i}, x_{i+1}\right]$) such that

$$
\begin{align*}
& s_{i}^{\prime}=f_{i}^{\prime} \quad(i=0,1, \ldots, N+1) \tag{1}\\
& s_{0}=f_{0} .
\end{align*}
$$

For a fixed $i \in\{0,1, \ldots, N\}$, set $x=x_{i}+t h, 0 \leqslant t \leqslant 1$. In $\left[x_{i}, x_{i+1}\right]$ the spline $s(x)$ of degree 2 satisfying (1) is

$$
\begin{equation*}
s(x)=s_{i} A_{0}(t)+s_{i+1} A_{1}(t)+h f_{i}^{\prime} A_{2}(t) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{0}(t)=-t^{2}+1, \quad A_{1}(t)=t^{2}, \quad A_{2}(t)=-t^{2}+t \tag{3}
\end{equation*}
$$

where $s_{i}(i=1,2, \ldots, N+1)$ are easily computed throughout the recurrence formula

$$
\begin{equation*}
2\left(-s_{i-1}+s_{i}\right)=h\left(f_{i-1}^{\prime}+f_{i}^{\prime}\right), \quad s_{0}=f_{0} \tag{4}
\end{equation*}
$$

In this case we have, for any $x \in[0,1]$, the error bounds

$$
\begin{align*}
\left|s^{(r-1)}(x)-f^{(r+1)}(x)\right| & \leqslant \frac{h^{2-r}}{(4)^{1-r} r!(2-2 r)!}\left\|f^{(3)}\right\|_{\infty}, \quad r=0,1 \\
|s(x)-f(x)| & \leqslant \frac{h^{2}}{4 \cdot 2!}\left\|f^{(3)}\right\|_{\infty} \tag{5}
\end{align*}
$$

provided $f \in \mathscr{C}^{3}[0,1]$. (Details are given for the similar case $k=6$.)

2.2. Spline of Degree 4

This particular case is included, with slightly different assumptions (f_{N+1} is given instead of $f_{N+1}^{\prime \prime}$), in the work of El Tarazi and Sallam [3]. Given the real numbers $f_{i}^{\prime}, f_{i}^{\prime \prime}(i=0,1, \ldots, N+1)$, and f_{0}, there exists a unique
spline $s(x) \in \mathscr{C}^{2}[0,1]$ of degree 4 (a polynomial of degree 4 in each subinterval $\left[x_{i}, x_{i+1}\right]$) such that

$$
\begin{align*}
& s_{i}^{\prime}=f_{i}^{\prime}, \quad s_{i}^{\prime \prime}=f_{i}^{\prime \prime} \quad(i=0,1, \ldots, N+1) \\
& s_{0}=f_{0} . \tag{6}
\end{align*}
$$

For a fixed $i \in\{0,1, \ldots, N\}$, set $x=x_{i}+t h, 0 \leqslant t \leqslant 1$. In $\left[x_{i}, x_{i+1}\right]$ the spine $s(x)$ of degree 4 satisfying (6) is

$$
\begin{equation*}
s(x)=s_{i} A_{0}(t)+s_{i+1} A_{1}(t)+h\left[f_{i}^{\prime} A_{2}(t)+f_{i-1}^{\prime} A_{3}(t)\right]+h^{2} f_{i}^{\prime \prime} A_{4}(t) \tag{7}
\end{equation*}
$$

with

$$
\begin{align*}
& A_{0}(t)=3 t^{4}-4 t^{3}+1 \\
& A_{1}(t)=-3 t^{4}+4 t^{3} \\
& A_{2}(t)=2 t^{4}-3 t^{3}+t \tag{8}\\
& A_{3}(t)=t^{4}-t^{3} \\
& A_{4}(t)=\left(\quad t^{4}-2 t^{3}+t^{2}\right) / 2
\end{align*}
$$

where $s_{i}(i=1,2, \ldots, N+1)$ are easily computed throughout the recurrence formula

$$
\begin{equation*}
12\left(-s_{i-1}+s_{i}\right)=6 h\left(f_{i-1}^{\prime}+f_{i}^{\prime}\right)+h^{2}\left(f_{i-1}^{\prime \prime}-f_{i}^{\prime \prime}\right), \quad s_{0}=f_{0} . \tag{9}
\end{equation*}
$$

We have in this case, for any $x \in[0,1]$, the error bounds

$$
\begin{gather*}
i s^{(r+1)}(x)-f^{(r+1)}(x) \left\lvert\, \leqslant \frac{h^{4-r}}{(4)^{2-r} r!(4-2 r)!} f^{(5)}\right. \|_{x} ; \quad r=0,1,2 \\
\left.|s(x)-f(x)| \leqslant \frac{h^{4}}{4^{2} \cdot 4!} \right\rvert\, f^{(5)} \|_{\infty} \tag{10}
\end{gather*}
$$

provided $f \in \mathscr{\&}^{5}[0,1]$. (Details are given for the similar case $k=6$.)

2.3. Spline of Degree 6

Given the real numbers $f_{i}^{\prime}, f_{i}^{\prime \prime}, f_{i}^{(3)}(i=0,1, \ldots, N+i)$, and f_{0}, there exists a unique spline $s(x) \in \mathscr{C}^{3}[0,1]$ of degree 6 (a polynomial of degree 6 in each subinterval $\left[x_{i}, x_{i+1}\right]$) such that

$$
\begin{align*}
& s_{i}^{\prime}=f_{i}^{\prime}, \tag{10}\\
& s_{0}=f_{0} .
\end{align*}
$$

Indeed we can express any polynomial $p(t)$ in $[0,1]$ of degree 6 in terms of its values at 0 and 1 , its first and second derivatives at 0 and 1 , and its third derivative at 0 ,

$$
\begin{aligned}
p(t)= & p_{0} A_{0}(t)+p_{1} A_{1}(t)+p_{0}^{\prime} A_{2}(t)+p_{1}^{\prime} A_{3}(t) \\
& +p_{0}^{\prime \prime} A_{4}(t)+p_{1}^{\prime \prime} A_{5}(t)+p_{0}^{(3)} A_{6}(t) .
\end{aligned}
$$

To determine $A_{0}, A_{1}, \ldots, A_{6}$, we write the above equality for $p(t)=1, t, t^{2}, \ldots, t^{6}$. We get the linear system

$$
\begin{array}{rlrl}
A_{0}+A_{1} & & =1 \\
A_{1}+A_{2}+A_{3} & & =t \\
A_{1}+2 A_{3}+2 A_{4}+2 A_{5} & =t^{2} \\
A_{1}+3 A_{3}+6 A_{5}+6 A_{6} & =t^{3} \\
A_{1}+4 A_{3}+12 A_{5} & =t^{4} \\
A_{1}+5 A_{3}+20 A_{5} & =t^{5} \\
A_{1}+6 A_{3}+30 A_{5} & =t^{6}
\end{array}
$$

Solving this simple system we get

$$
\begin{align*}
& A_{0}(t)=-10 t^{6}+24 t^{5}-15 t^{4}+1 \\
& A_{1}(t)=10 t^{6}-24 t^{5}+15 t^{4} \\
& A_{2}(t)=-6 t^{6}+15 t^{5}-10 t^{4}+t \\
& A_{3}(t)=-4 t^{6}+9 t^{5}-5 t^{4} \tag{12}\\
& A_{4}(t)=\left(\begin{array}{ll}
-3 t^{6}+8 t^{5}-6 t^{4}+t^{2}
\end{array}\right) / 2 \\
& A_{5}(t)=\left(\begin{array}{r}
t^{6}-2 t^{5}+t^{4}
\end{array}\right) / 2 \\
& A_{6}(t)=\left(\begin{array}{l}
-t^{6}+3 t^{5}-3 t^{4}+t^{3}
\end{array}\right) / 6
\end{align*}
$$

Now for a fixed $i \in\{0,1, \ldots, N\}$, set $x=x_{i}+t h, 0 \leqslant t \leqslant 1$. In $\left[x_{i}, x_{i+1}\right]$ the spline $s(x)$ of degree 6 satisfying (11) is

$$
\begin{align*}
s(x)= & s_{i} A_{0}(t)+s_{i+1} A_{1}(t)+h\left[f_{i}^{\prime} A_{2}(t)+f_{i+1}^{\prime} A_{3}(t)\right] \\
& +h^{2}\left[f_{i}^{\prime \prime} A_{4}(t)+f_{i+1}^{\prime \prime} A_{5}(t)\right]+h^{3} f_{i}^{(3)} A_{6}(t) . \tag{13}
\end{align*}
$$

We have a similar expression for $s(x)$ in $\left[x_{i-1}, x_{i}\right]$. Since $s(x) \in \mathscr{C}^{3}[0,1]$
so $s^{(3)}\left(x_{i}^{-}\right)=s^{(3)}\left(x_{i}^{+}\right) \quad(i=1,2, \ldots, N)$ and $s^{(3)}\left(x_{\bar{v}+1}^{-}\right)=f_{i+1}^{(3)}$ lead to the recurrence formula

$$
\begin{align*}
120\left(-s_{i-1}+s_{i}\right)= & 60 h\left(f_{i-1}^{\prime}+f_{i}^{\prime}\right)+12 h^{2}\left\{f_{i-1}^{\prime \prime}-f_{i}^{\prime \prime}\right) \\
& +h^{3}\left(f_{i-1}^{(3)}+f_{i}^{(3)}\right), \quad s_{0}=f_{0} . \tag{14}
\end{align*}
$$

In order to give an error bound for the above spline and its derivatives, we recall first the following result due to Ciarlet et al. [2].

Let $g \in \mathscr{C}^{2 m}[0, h]$ be given. Let $p_{2 m-1}$ be the unique Hermite interpolation polynomial of degree $2 m-1$ that matches g and its first $n-1$ derivatives $g^{(r)}$ at 0 and h. Then

$$
\begin{equation*}
\left|e^{(r)}(x)\right| \leqslant \frac{h^{r}[x(h-x)]^{m-r} G}{r!(2 m-2 r)!}, \quad r=0,1, \ldots, m ; \quad 0 \leqslant x \leqslant h \tag{15.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|e^{(r)}(x)\right|=\left|g^{(r)}(x)-p_{2 n-1}^{(r)}(x)\right| \quad \text { and } \quad G=\max _{0 \leqslant x \leqslant h}\left|g^{(2 m)}(x)\right| \tag{15.2}
\end{equation*}
$$

The bounds in (15.1) are best possible for $r=0$ only. For some values of m ($m=2$ and $m=3$) optimal error bounds on the derivatives $e^{(r)}(x)$ do exist (see Birkhoff and Priver [1], or Varma and Howell [4]).

Now we go back to our spline. Notice that is $\left[x_{i}, x_{i+i}\right](i=0,1, \ldots, N)$, $s^{\prime}(x)$ is the Hermite interpolation polynomial of degree 5 matching $f^{\prime}, f^{\prime \prime}$, $f^{(3)}$ at x_{i} and x_{i+1}, so for any $x \in\left[x_{i}, x_{i+1}\right]$ we have [using (15.1) with $m=3, g=f^{\prime}$, and $\left.p_{5}=s^{\prime}\right]$

$$
\left|s^{(r-1)}(x)-f^{(r+1)}(x)\right| \leqslant \frac{h^{r}\left[\left(x-x_{i}\right)\left(x_{i+1}-x\right)\right]^{3-r}}{r!(6-2 r)!}\left\|f^{(7)}\right\|_{x}, \quad \gamma=0,1,2,3 .
$$

It follows then that

$$
\left|s^{(r-1)}(x)-f^{(r+1)}(x)\right| \leqslant \frac{h^{r}\left[h^{2} q(1-q)\right]^{3-r}}{r!(6-2 r)!}\left|f^{(7)}\right|_{x}, \quad r=0,1,2,3
$$

with $q=\left(x-x_{i}\right) / h$. Therefore for any $x \in[0,1]$ we have

$$
\begin{equation*}
\left|s^{(r+1)}(x)-f^{(r+1)}(x)\right| \leqslant \frac{h^{6-r}}{(4)^{3-r} r!(6-2 r)!}\left\|f^{(7)}\right\|_{x}, \quad r=0,1,2,3 \tag{15.3}
\end{equation*}
$$

provided $f \in \mathscr{C}^{7}[0,1]$. Integrating over $[0, x]($ for $r=0)$, using $s(0)=f(0)$, we obtain

$$
\begin{equation*}
|s(x)-f(x)| \leqslant \frac{h^{5}}{4^{3} \cdot 6!}\left\|f^{(7)}\right\|_{x} \tag{15.4}
\end{equation*}
$$

2.4. Spline of Degree 8

Given the real numbers $f_{i}^{\prime}, f_{i}^{\prime \prime}, f_{i}^{(3)}, f_{i}^{(4)}(i=0,1, \ldots, N+1)$, and f_{0}, there exists a unique spline $s(x) \in \mathscr{C}^{4}[0,1]$ of degree 8 (a polynomial of degree 8 in each subinterval $\left[x_{i}, x_{i+1}\right]$) such that

$$
\begin{align*}
& s_{i}^{\prime}=f_{i}^{\prime}, \quad s_{i}^{\prime \prime}=f_{i}^{\prime \prime}, \quad s_{i}^{(3)}=f_{i}^{(3)}, \quad s_{i}^{(4)}=f_{i}^{(4)} \quad(i=0,1, \ldots, N+1) \\
& s_{0}=f_{0} . \tag{16}
\end{align*}
$$

For a fixed $i \in\{0,1, \ldots, N\}$, set $x=x_{i}+t h, 0 \leqslant t \leqslant 1$. In $\left[x_{i}, x_{i+1}\right]$, the spline $s(x)$ of degree 8 satisfying (16) is

$$
\begin{align*}
s(x)= & s_{i} A_{0}(t)+s_{i+1} A_{1}(t)+h\left[f_{i}^{\prime} A_{2}(t)+f_{i+1}^{\prime} A_{3}(t)\right] \\
& +h^{2}\left[f_{i}^{\prime \prime} A_{4}(t)+f_{i+1}^{\prime \prime} A_{5}(t)\right] \\
& +h^{3}\left[f_{i}^{(3)} A_{6}(t)+f_{i+1}^{(3)} A_{7}(t)\right]+h^{4} f_{i}^{(4)} A_{8}(t) \tag{17}
\end{align*}
$$

with

$$
\begin{align*}
& A_{0}(t)=35 t^{8}-120 t^{7}+140 t^{6}-56 t^{5}+1 \\
& A_{1}(t)=-35 t^{8}+120 t^{7}-140 t^{6}+56 t^{5} \\
& A_{2}(t)=20 t^{8}-70 t^{7}+84 t^{6}-35 t^{5}+t \\
& A_{3}(t)=15 t^{8}-50 t^{7}+56 t^{6}-21 t^{5} \\
& A_{4}(t)=\left(10 t^{8}-36 t^{7}+45 t^{6}-20 t^{5}+t^{2}\right) / 2 \tag{18}\\
& A_{5}(t)=\left(-5 t^{8}+16 t^{7}-17 t^{6}+6 t^{5}\right) / 2 \\
& A_{6}(t)=\left(4 t^{8}-15 t^{7}+20 t^{6}-10 t^{5}+t^{3}\right) / 6 \\
& A_{7}(t)=\left(\begin{array}{llll}
t^{8} & -3 t^{7} & +3 t^{6} & -t^{5}
\end{array}\right) / 6 \\
& A_{8}(t)=\left(\begin{array}{lll}
& t^{8} & -4 t^{7} \\
+6 t^{6} & -4 t^{5}+t^{4}
\end{array}\right) / 24,
\end{align*}
$$

where $s_{i}(i=1,2, \ldots, N+1)$ are easily computed using the recurrence formula

$$
\begin{align*}
1680\left(-s_{i-1}+s_{i}\right)= & 840 h\left(f_{i-1}^{\prime}+f_{i}^{\prime}\right)+180 h^{2}\left(f_{i-1}^{\prime \prime}-f_{i}^{\prime \prime}\right) \\
& +20 h^{3}\left(f_{i-1}^{(3)}+f_{i}^{(3)}\right)+h^{4}\left(f_{i-1}^{(4)}-f_{i}^{(4)}\right), \quad s_{0}=f_{0} . \tag{19}
\end{align*}
$$

We have in this case, for any $x \in[0,1]$, the error bounds

$$
\begin{align*}
\left|s^{(r+1)}(x)-f^{(r+1)}(x)\right| & \left.\leqslant \frac{h^{8-r}}{(4)^{4-r} r!(8-2 r)!} \right\rvert\, f^{(9)} \|_{\infty}, \quad r=0,1,2,3,4 \\
|s(x)-f(x)| & \leqslant \frac{h^{8}}{4^{4} \cdot 8!} \|\left. f^{(9)}\right|_{\cdot \infty} \tag{20}
\end{align*}
$$

provided $f \in \mathscr{C}^{9}[0,1]$. (Details are given for the similar case $k=6$.)

2.5. Spline of Degree 10

Given the real numbers $f_{i}^{\prime}, f_{i}^{\prime \prime}, f_{i}^{(3)}, f_{i}^{(4)}, f_{i}^{(5)}(i=0,1, \ldots, N+1)$, and f_{0}, there exists a unique spline $s(x) \in \mathscr{C}^{5}[0,1]$ of degree 10 (a polynomial of degree 10 in each subinterval $\left[x_{i}, x_{i-1}\right]$) such that

$$
\begin{align*}
& s_{i}^{\prime}=f_{i}^{\prime}, s_{i}^{\prime \prime}=f_{i}^{\prime \prime}, s_{i}^{(3)}=f_{i}^{(3)}, s_{i}^{(4)}=f_{i}^{(4)}, s_{i}^{(5)}=f_{i}^{(5)}(i=0,1, \ldots, N+1) \\
& s_{0}=f_{0} . \tag{21}
\end{align*}
$$

For a fixed $i \in\{0,1, \ldots, N\}$, set $x=x_{i}+t h, 0 \leqslant t \leqslant 1$. In $\left[x_{i}, x_{i+1}\right]$ the spline $s(x)$ of degree 10 satisfying (21) is

$$
\begin{align*}
s(x)= & s_{i} A_{0}(t)+s_{i+1} A_{1}(t)+h\left[f_{i}^{\prime} A_{2}(t)+f_{i+1}^{\prime} A_{3}(t)\right] \\
& +h^{2}\left[f_{i}^{\prime \prime} A_{4}(t)+f_{i+1}^{\prime \prime} A_{5}(t)\right] \\
& +h^{3}\left[f_{i}^{(3)} A_{6}(t)+f_{i+1}^{(3)} A_{7}(t)\right] \\
& +h^{4}\left[f_{i}^{(4)} A_{8}(t)+f_{i+1}^{(4)} A_{9}(t)\right]+h^{5} f_{i}^{(5)} A_{10}(t) \tag{22}
\end{align*}
$$

with

$$
\begin{align*}
& A_{0}(t)=-126 t^{10}+560 t^{9}-945 t^{8}+720 t^{7}-210 t^{6}+1 \\
& A_{1}(t)=126 t^{10}-560 t^{9}+945 t^{8}-720 t^{7}+210 t^{6} \\
& A_{2}(t)=-70 t^{10}+315 t^{9}-540 t^{8}+420 t^{7}-126 t^{6}+t \\
& A_{3}(t)=-56 t^{10}+245 t^{9}-405 t^{8}+300 t^{7}-84 t^{6} \\
& A_{4}(t)=\left(-35 t^{10}+160 t^{9}-280 t^{8}+224 t^{7}-70 t^{6}+t^{2}\right) / 2 \\
& A_{5}(t)=\left(21 t^{10}-90 t^{9}+145 t^{8}-104 t^{7}+28 t^{6}\right) / 2 \tag{23}\\
& A_{6}(t)=\left(-15 t^{10}+70 t^{9}-126 t^{8}+105 t^{7}-35 t^{6}+t^{3}\right) / 6 \\
& A_{7}(t)=\left(\begin{array}{ll}
\left.-6 t^{10}+25 t^{9}-39 t^{8}+27 t^{7}-7 t^{6}\right) / 6
\end{array}\right. \\
& A_{8}(t)=\left(\begin{array}{ll}
\left.-5 t^{10}+24 t^{9}-45 t^{8}+40 t^{7}-15 t^{6}+t^{4}\right) / 24 \\
A_{5}(t)=\left(\quad t^{10}-4 t^{9}+6 t^{8}-4 t^{7}+t^{6}\right) / 24 \\
A_{50}(t)=\left(-t^{10}+5 t^{9}-10 t^{8}+10 t^{7}-5 t^{6}+t^{5}\right) / 120,
\end{array}\right.
\end{align*}
$$

where $s_{i}(i=1,2, \ldots, N+1)$ are easily computed throughout the recurrence formula

$$
\begin{align*}
30240\left(-s_{i-1}+s_{i}\right)= & 15120 h\left(f_{i-1}^{\prime}+f_{i}^{\prime}\right) \\
& +3360 h^{2}\left(f_{i-1}^{\prime \prime}-f_{i}^{\prime \prime}\right)+420 h^{3}\left(f_{i-1}^{(3)}+f_{i}^{(3)}\right) \tag{24}\\
& +30 h^{4}\left(f_{i-1}^{(4)}-f_{i}^{(4)}\right)+h^{5}\left(f_{i-1}^{(5)}+f_{i}^{(s)}\right), \quad s_{0}=f_{0} .
\end{align*}
$$

We have in this case, for any $x \in[0,1]$, the error bounds

$$
\begin{align*}
\left|s^{(r+1)}(x)-f^{(r+1)}(x)\right| & \leqslant \frac{h^{10-r}}{(4)^{5-r} r!(10-2 r)!}\left\|f^{(11)}\right\|_{\infty}, \quad r=0,1,2,3,4,5 \tag{25}\\
|s(x)-f(x)| & \leqslant \frac{h^{10}}{4^{5} \cdot 10!}:\left|f^{(11)}\right|_{\infty}
\end{align*}
$$

provided $f \in \mathscr{C}^{11}[0,1]$. (Details are given for the similar case $k=6$.)

3. CONJECTURES

Consider Table I obtained from (3), (8), and (12) after factorization. It is easily seen that the polynomials A_{0}, A_{2}, A_{4}, and A_{6} follow a specific simple pattern according to which, for case $k=8$, we should expect $A_{0}, A_{2}, A_{4}, A_{6}$, and A_{8} to be

$$
\begin{aligned}
& A_{0}(t)=(t-1)^{4}\left(35 t^{4}+20 t^{3}+10 t^{2}+4 t+1\right) \\
& A_{2}(t)=\frac{t}{1!}(t-1)^{4}\left(20 t^{3}+10 t^{2}+4 t+1\right) \\
& A_{4}(t)=\frac{t^{2}}{2!}(t-1)^{4}\left(10 t^{2}+4 t+1\right) \\
& A_{6}(t)=\frac{t^{3}}{3!}(t-1)^{4}(4 t+1) \\
& A_{8}(t)=\frac{t^{4}}{4!}(t-1)^{4}
\end{aligned}
$$

TABLE I

k	A_{0}	A_{2}	A_{4}
2	$-(t-1)(t+1)$	$-\frac{t}{1!}(t-1)$	
4	$(t-1)^{2}\left(3 t^{2}+2 t+1\right)$	$\frac{t}{1!}(t-1)^{2}(2 t+1)$	$\frac{t^{2}}{2!}(t-1)^{2}$
6	$-(t-1)^{3}\left(10 t^{3}+6 t^{2}+3 t+1\right)$	$-\frac{t}{1!}(t-1)^{3}\left(6 t^{2}+3 t+1\right)$	$-\frac{t^{2}}{2!}(t-1)^{3}(3 t+1)$

which is correct. The factor $\left(35 t^{4}+20 t^{3}+10 t^{2}+4 t+1\right)$ is deduced from $\left(10 t^{3}+6 t^{2}+3 t+1\right)$ as follows: $4=1+3, \quad 10=1+3+6, \quad 20=1+3+$ $6+10$, and $35=1+4+10+20$. Now from (3), (8), (12), and (18), after factorization, we have Table II. A_{1}, A_{3}, A_{5}, and A_{7} follow a specific pattern but it is more difficult to see. In fact one should first compute $A_{1}=1-A_{0}$ and then start to deduce the other polynomials. For the case $k=8$ we find that

$$
\begin{aligned}
120 & =(15 \times 8) / 1, & 140 & =(35 \times 8) / 2, \\
35 & =(5 \times 7) / 1, & 21 & =(6 \times 7) / 2 .
\end{aligned}
$$

To see this more clearly consider the case $k=10$. From (23), after factorization, we have

$$
\begin{aligned}
& A_{\mathrm{i}}(t)=\frac{t^{6}}{0!}(t-1)^{0}\left(126 t^{4}-560 t^{3}+945 t^{2}-720 t+210\right)=1-A_{0}(t) \\
& A_{3}(t)=-\frac{t^{6}}{1!}(t-1)^{1}\left(56 t^{3}-189 t^{2}+216 t-84\right) \\
& A_{5}(t)=\frac{t^{6}}{2!}(t-1)^{2}\left(21 t^{2}-48 t+28\right) \\
& A_{7}(t)=-\frac{t^{6}}{3!}(t-1)^{3}(6 t-7) \\
& A_{9}(t)=\frac{t^{6}}{4!}(t-1)^{4}
\end{aligned}
$$

TABLE II

h	A_{1}	A_{3}
2	t^{2}	A_{5}
4	$-t^{3}(3 t-4)$	$\frac{t^{3}}{1!}(t-1)$
6	$t^{4}\left(10 t^{2}-24 t+15\right)$	$-\frac{t^{4}}{1!}(t-1)(4 t-5)$
8	$-t^{5}\left(35 t^{3}-120 t^{2}-140 t-56\right)$	$\frac{t^{5}}{1!}(t-1)\left(15 t^{2}-35 t+21\right)$

Now let us note the following:

$$
\begin{aligned}
560 & =(56 \times 10) / 1, & 945 & =(189 \times 10) / 2, \\
189 & =(21 \times 9) / 1, & 216 & =(48 \times 9) / 2, \\
48 & =(6 \times 8) / 1, & 28 & =(7 \times 8) / 2, \\
720 & =(216 \times 10) / 3, & 210 & =(84 \times 10) / 4 \\
84 & =(28 \times 9) / 3, & &
\end{aligned}
$$

From (4), (9), (14), (19), and (24) we see that the coefficients (from left to right) involved in these recurrence formulas follow the pattern

k						
2	$2!/ 1!$	$1!/(0!1!)$				
4	$4!/ 2!$	$3!/(1!1!)$	$2!/(0!2!)$			
6	$6!/ 3!$	$5!/(2!1!)$	$4!/(1!2!)$	$3!/(0!3!)$		
8	$8!/ 4!$	$7!/(3!1!)$	$6!/(2!2!)$	$5!/(1!3!)$	$4!(0!4!)$	
10	$10!/ 5!$	$9!/(4!1!)$	$8!/(3!2!)$	$7!/(2!3!)$	$6!(1!4!)$	$5!/(0!5!)$

Finally, it is clear that (5), (10), (15), (20), and (25) follow a simple pattern.

4. Application

As an interesting application, the above splines constitute a new class of numerical quadrature rules since they allow us to approximate

$$
\begin{equation*}
f(x)=\int_{a}^{x} f^{\prime}(t) d t \quad \text { in }[a, b] \tag{26}
\end{equation*}
$$

an integral which appears often in statistics when computing distributions.
Notice that (4), applied to the function f given in (26), is the classical trapezoidal rule, while (9), (14), (19), and (24) are the classical trapezoidal rules with end correction.

We applied all of the above formula on

$$
f(x)=\int_{1}^{x} d t /(t+1) \quad \text { in }[1,5] .
$$

TABLE III

N	$k: 2$	4	6	8	10
1	$6.9 \mathrm{E}-02$	$6.1 \mathrm{E}-03$	$6.2 \mathrm{E}-04$	$6.8 \mathrm{E}-05$	$7.5 \mathrm{E}-05$
5	$8.2 \mathrm{E}-03$	$9.7 \mathrm{E}-05$	$1.5 \mathrm{E}-06$	$2.5 \mathrm{E}-08$	$4.5 \mathrm{E}-10$
10	$2.5 \mathrm{E}-03$	$8.9 \mathrm{E}-06$	$4.2 \mathrm{E}-08$	$2.3 \mathrm{E}-10$	$1.3 \mathrm{E}-12$
15	$1.2 \mathrm{E}-03$	$2.0 \mathrm{E}-06$	$4.5 \mathrm{E}-09$	$1.2 \mathrm{E}-11$	$3.2 \mathrm{E}-14$
20	$6.8 \mathrm{E}-04$	$6.8 \mathrm{E}-07$	$8.8 \mathrm{E}-10$	$1.4 \mathrm{E}-12$	$2.7 \mathrm{E}-15$
25	$4.4 \mathrm{E}-04$	$2.9 \mathrm{E}-07$	$2.5 \mathrm{E}-10$	$2.5 \mathrm{E}-13$	$6.0 \mathrm{E}-16$
30	$3.1 \mathrm{E}-04$	$1.5 \mathrm{E}-07$	$8.6 \mathrm{E}-11$	$6.0 \mathrm{E}-14$	$5.7 \mathrm{E}-16$

For each case we first computed $s_{i}(i=1,2, \ldots, N+1)$ by the corresponding recurrence formula. Then we computed the value of $s(x)$ at N equally spaced points in each subinterval $\left[x_{i}, x_{i+1}\right](i=0,1, \ldots, N)$ by its corresponding expression. [For instance, for $k=8$, (19) is first used, then (17).] This was done on a personal computer using a simple Basic program in double precision. When dealing with polynomials, nested form may reduce the effect of round-off errors. $\left[a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right.$ in nested form is $\left(\left(\left(a_{4} x+a_{3}\right) x+a_{2}\right) x+a_{1}\right) x+a_{0}$.]

Table III of bounds for the actual error shows the method to be effective and confirms the theoretical results.

5. Conclusion

We have studied the existence and uniqueness of a ciass of splines of even degree that match the derivatives at the knots to a given order, obtaining direct simple formulas. Error estimates were derived which, together with the numerical results, showed the method to be efficient.

References

1. G. Birkhofr and A. Priver, Hermite interpolation errors for derivatives, J. Math. Phys. 46 (1967), 440-447.
2. P. G. Ciarlet, M. H. Schlltz, and R. S. Varga, Numerical methods of high-order accuracy, Numer. Math. 9 (1967), 394-430.
3. M. N. Ei Tarazi and S. Sallam, On quartic splines with application to guadratures. Computing 38 (1987), 355-361.
4. A. K. Varma and G. Howell, Best error bounds for derivatives in two poine Birkhof interpolation problems, J. Approx. Theory 38 (1983). 258-268.
