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On Even- Degree Splines
with Application to Quadratures
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A class of splines of even degree k = 2:1( and continuity order '(j' that match the
derivatives up to order rx at the knots of a uniform partition are studied for
'X = 1. 2. 3. 4, and 5. The simple direct formulas obtained can be applied :0 quad-
ratures. t;; 1990 Academic Press. Inc.

1. I"iTRODL'CTIOl'

Recently, EI Tarazi and Sallam [3] have constructed an interpolatory
quartic spline which matches the first and second derivatives of a given
function at the knots.

In this paper we extend that work, studying a dass of splines of even
degree k = 2x and continuity order rg~ that match the derivatives up to the
order x at the knots of a uniform partition for :x = 1, 2, 3, 4, and 5. The
reason for restricting ourselves to even-degree splines is that the formulas
obtained are explicit. There are no linear systems to solve.

In Section 2 we study the construction, existence, uniqueness, and error
bounds for the proposed splines, In Section 3 some conjectures relating
these different splines are stated. Finally, in Section 4 we apply these splines
to quadratures. Both theory and numerical results show the method to be
efficient.

2. SPLINES OF DEGREE 2, 4, 6, 8, Ar-iD 10

We construct here a class of interpolating splines of degree k, for
k = 2,4,6,8, and 10. !Ex error estimates for these splines are also represen­
ted. Since all cases considered are similar, details are given only for the case
of degree k = 6.
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Let {Xi' i = 0, 1, ..., N + I} be a uniform partition of [0, 1]. Set
h = X i + 1 - Xi for i = 0, 1, ..., N. (gjr1 stands for g(r)(x i ), i = 0, 1, ..., N + 1 and
r = 0, 1, .... ) We have the following cases:

2.1. Spline of Degree 2

Given the real numbers f/ (i = 0, 1, ..., N + 1) and fa, there exists a
unique spline s(x) E rgl [0, 1] of degree 2 (a polynomial of degree 2 in each
subinterval [Xi' X i + IJ) such that

I "Si =Ji

50 =fo·

(i=o, 1, ..., N + 1)
(1)

For a fixed i E {O, 1, ..., N}, set X = Xi + th, 0:( t:( 1. In [Xi' X i + IJ the spline
s(x) of degree 2 satisfying (l) is

(2)

with

(3)

where Si (i = 1, 2, ..., N + 1) are easily computed throughout the recurrence
formula

So = fa· (4 )

In this case we have, for any X E [0, 1], the error bounds

h 2 - r

Is(r-I)(x) -f(r+ 1)(x)1 ,,::: 'If(3)I'
~(4)I-rr! (2-2r)! . 100'

h2

Is(x)-f(x)1 :(4.2! Ilf(3)11x:

r=O,1

(5)

provided f E rg3 [0, 1]. (Details are given for the similar case k = 6.)

2.2. Spline of Degree 4

This particular case is included, with slightly different assumptions (fv + 1

is given instead of f;~ + d, in the work of EI Tarazi and Sallam [3]. Given
the real numbers f/, ft (i = 0, 1, ..., N + 1), and fa, there exists a unique
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spline S(X)E~2[O, 1] of degree 4 (a polynomial of degree 4 in each subi.J.­
terval [Xi,xi+Jl such that

So= fo·

5;'=//' (i = 0, 1, .,., N...:- 1)
l6 )

For a fixed i E to, 1, "', N}, set x = Xi + th, 0:( t:( 1. In [Xi' X i + J the spline
s( x 1of degree 4 satisfying (6) is

with

Ao(t) = 3t4
- 4t3 + 1

A,(t) = -3t4 + 4t 3

A 2(t) = 2t4
- 3t3 + t (8i

where Si (i = 1, 2, ..., N + 1) are easily computed throughout the recurrence
formula

r

So =10' (9)

We have in this case, for any x E [0, 1], the error bounds

(10 )

provided f E C6 S[O, I]. (Details are given for the similar case k = 6,)

2.3. Spline of Degree 6

Given the real numbers f/, f/', f~3) (i = 0, 1, .,', 1'1 + 1), and fo, there
exists a unique spline S(X)E~3[0, 1J of degree 6 (a polynomial of degree
6 in each subinterval [Xi' X i+,]) such that

S
(3) _ 1'(31
i -J; (i = 0, 1, ..., LV + 1)

( 11 J
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Indeed we can express any polynomial p(t) in [0, 1] of degree 6 in terms
of its values at 0 and 1, its first and second derivatives at 0 and 1, and its
third derivative at 0,

p(t) = PoAo(t) + PIAI(t) + P~A2(t) + P~A3(t)

+ p~ A 4(t) + p~ A 5(t) + p~3)A6(t).

To determine Ao, AI, ..., A 6, we write the above equality for
p(t)= 1, t, t2, ..., t6. We get the linear system

=1

=t

+3A 3 + 6A 5+ 6A 6= t3

+4A 3 + 12A 5 = t4

+5A 3 +20A 5 = t5

+6A 3 +30A 5 = t6.

Solving this simple system we get

Ao(t) = -lOt6+ 24t5- 15t4 + 1

AI(t) = 10t6- 24t5+ 15t4

A 2(t) = -6t6+ 15t5- lOt4 + t

A 3(t)= -4t6 + 9t5 - 5t4 (12)

A 4(t)=(-3t6 + 8t5 - 6t4 + t2)/2

A 5(t) = ( t6 - 2t5 + t4 )/2

A 6(t) = ( -t6 + 3t5 - 3t4 + t3)/6.

Now for a fixed iE {O, 1, ..., N}, set x=xi+ th, 0 ~ t~ 1. In [Xi' Xi,l] the
spline s(x) of degree 6 satisfying (11) is

s(X) = SiAO(t) + Si+ IA I(t) + hUt'A 2(t) + f/+ I A 3(t)]

+h2U/,A 4(t) +f/~IA5(t)] +h3f?)A6(t). (13)

We have a similar expression for s(x) in [Xi-I, xJ. Since S(X)E~3[0, 1]



EVE"i-DEGREE SPLIl'\ES 161

so Sf3;(X i-)=S(3)CXt) (i=1,2~ ...,;V) and S(3'(X.V71)= ...f:'~J~1 lead to th.e
recurrence formula

120( I ")-60J(t' .,), 1~'21'" ,n\..;. -5i - 1 -r.Ji - 1 Ji-l + Ji. l Lfl \ji-l- if .'

So == fo-

In order to give an error bound for the above spline and its derivatives,
we recall first the following result due to Carlet et al. [2 J.

Let g E Yf2m[0, h] be given. Let P2m _ 1 be the unique Hermite interpola­
tion polynomial of degree 2m - 1 that matches g and its first m - 1
derivatives g(rl at 0 and h. Then

VrX(!l- x)]m-rG
I

(" \ .t "' •

e "IX Ii ~ -., (2 '))' 'I. ;n-_r.

where

1'=0,1, ..., m; (15,1)

and G= max \g(2m'i(x)\. (15.2)
O~x::;;h

The bounds in (15.1) are best possible for 1'=0 only. For some values of
m (/11 = 2 and m = 3) optimal error bounds on the derivatives e(r)(x) de
exist (see Birkhoff and Priver [1], or Varma and Howen [4J).

Now we go back to our spline. Notice that is [Xi' Xi~ 1J (i = 0,1, ..., lVj,
s'(x) is the Hermite interpolation polynomial of degree 5 matching f',
/3) at Xi and X i +[, so for any XE[Xi,Xi+1J we have [using (15:1) "vitl'.
m=3, g=j', and Ps=s']

It follows then that

h'[h2 (1- )]3-,
i«r-l){Y'_ji'+ll( )I~ q q 11,(7)1.
,~ ," J x , "" r! (6 _ 21' )! "J, ex. ,

with q = (x - xtl/h. Therefore for any x E [0, 1J we have

r == 0, 1, 2~ 3.

r==O, 1,2,3

r=O, 1,2,3 (15.3)

provided j E Yf7 [0, 1]. Integrating over [0, x] (for r = 0), using s(O) = I(0 y,
we obtain

(15.4 )
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2.4. Spline of Degree 8

Given the real numbers f/, I", f~3), f~4) (i = 0, 1, ... , N + 1), and fo, there
exists a unique spline S(X)E'64 [0, 1] of degree 8 (a polynomial of degree
8 in each subinterval [x;, X;+I]) such that

s;=f/,

so=fo·

Sl~' = It", (i = 0, 1, ..., N + 1)

(16)

For a fixed iE{O, 1, ... ,N}, set x=x;+th, O~t~1. In [X;,X;+I]' the
spline s(x) of degree 8 satisfying (16) is

seX) = s;Ao(t) + s;+ 1A l(t) + h[f/ A 2(t) + I'+ 1A 3(t)]

+ h2 [I"A 4(t) + fi~ IA 5(t)]

+ h3[f~3)A 6(t) + f~3]. 1A 7 (t)] + h'1~4)As(t) (17)

with

Ao(t) = 35tS
- 120t7 + 140t6

- 56t5 + 1

A l(t) = - 35tS + 120t7
- 140t6 + 56t 5

A 2(t)= 20tS -70t7 + 84t6
- 35t5 + t

A 3(t)= 15tS - 50t7 + 56t6
- 21t5

A 4(t)= (10t S - 36t7 + 45t6
- 20t5 + t 2 )/2 (18)

As(t) = (-5t S + 16t7 -17t6 + 6t5 )/2

A 6(t)= ( 4tS -15t7 + 20t6
- lOt 5 + t3)/6

A 7(t)= ( t S - 3t7 + 3t6 - t 5 )/6

As(t) = ( t S - 4t7 +6t6 - 4t 5 + t4)/24,

where s; (i = 1, 2, ..., N + 1) are easily computed using the recurrence
formula

r = 0, 1, 2, 3, 4

1680( -S;_I + s;) = 840h(fi_1 +1/) + 180h2(I"_1 - In
+ 20h 3(fj3J. 1 +1~3») + h4(f~~ 1 - 1~4»),

We have in this case, for any x E [0, 1], the error bounds

/S-r
Is(r+I)(x)-f(r+I)(x)l~ 1 IP9)11x>

(4)4-rr! (8-2r)!

hS

IS(X) - l(x)1 ::::; 44. 8! 111(9)1: CL·

so=lo. (19)

(20)

provided IE '6"9 [0, 1]. (Details are given for the similar case k = 6.)
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Given the real numbers //, f", /)3), /;4\ I;5' (i = 0, 1, ... , lv + 1), and f'J'
there exists a unique spline s(x) E «f5 [0, 1] of degree 10 (a polynomial cf
degree 10 in each subinterval [Xj, Xi-IJ) such that

c: = r' ,I' = {-" (3) =/(3)
Uj J i ~""j j l , Sii' (i = 0, 1, ... , N + 1)

{21 )

l:'or a fixed ;", {O 1 l~q set X= x·+ tn' {\:;( t:;( 1 I,... 'Yo Y . . -: tho SD1';ne..;. .L~ £, '- ,~ ... , ~v J' ~ . 1 ~, V -....;::: • -.....;;:;:; ""'-. u. L. r'>, l' ... "'! ..;..... ! J ... J.\.. ... L ......

s(x) of degree 10 satisfying (21) is

s(x) = sjAo(t) +Si+ 1 A 1(t) +hU/A:(t) -+ ft'.+- ,A 3(t) J
+ h2 [f/,A 4 (t) + f/~ lA 5(t)J

+ h3 [f;3)A 6(t) +I)~IA7(t)J

with

Ao(t) = -126t 10 + 560t9
- 945t8 + nOr 7

- 210t6 + 1

A. 1(;) = 126t lO
- 560t9 + 945t8

- 720t 7 + 210;6

A:(t) = -70t 10 + 315t9
- 540t8 + 420t7

- 126;6 + t

A 3(t) = - 56[10 + 245t9
- 405t8 + 3001' - 84;6

A 4 (t) = (-35t lO + 160t9
- 280t8 +224t7 -70,6 + (2)/2

A 5(t)= ( 21[10 -90t9 + 145t8 -104t7 +28(6)/2 (23f

A6 {t) = (-15t lO +70t 9
- 126t8 + l05t 7

- 35t6 + ;3)/6

A 7(:)='( -6[10 +25t9 -39t8 +27t7 -7t6 ),i6

A8(:)=( _5t iO +24t9 -45t8 +40t7 -15t6 +t4 )/24

A 9(t)= ( tlO -4t9 + 6t 8 4"7 + t6 )/24

AlOU) = ( _tlO + 5t9 -lOt8 + lOt 7 _ '1"6 -i- 1- 5 \ / ~ 10
-It ,l Ii l"",v,

where s; (i = 1, 2, ... , N + 1) are easily computed throughout the recurrence
formula

30240( -Sj _ i + s;) = 15120h(f'_ 1 + In
+ 3360h1(f"_1 - f") + 420h3(f~3)! + f)3;)
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We have in this case, for any x E [0, 1], the error bounds

r = 0, 1,2, 3,4,5

(25)

provided f E ~ 11 [0, 1]. (Details are given for the similar case k = 6.)

3. CONJECTURES

Consider Table I obtained from (3), (8), and (12) after factorization. It
is easily seen that the polynomials A o, A z, A 4 , and A 6 follow a specific
sim~le pattern according to which, for case k = 8, we should expect
Ao, A z, A 4 , A 6 , and As to be

Ao(t) = (t - 1)4(35t4+ 20t3 + lOtZ +4t + 1)

t
Az(t) =T! (t-1)4(20t 3 + lOtZ + 4t + 1)

t Z

A 4(t) = 2! (t _1)4( lOt Z +4t + 1)

t 3

A 6(t)= 3! (t-1)4(4t+ 1)

t4

As(t) = 4! (t - 1)4,

TABLE I

k

2 -(1-1)(1+ 1)
(

-li (1-1)

(2, IJ
--2!(I-l)'(31+1) --(1-1)33! .
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\vhich is correct. The factor (35t 4 + 20t3 + lOt" + Lt + 1) is deduced from
(10t 3 + 6t" + 3t + 1) as follows: 4 = 1+ 3, 10 = 1+ 3 + 6, 20 = 1 + 3 -+­
6+10, and 35=1+4+10+20. Now from (3), (8), (12), and (18), after
factorization, we have Table II. AI' A 3 , A 5 , and A 7 follow a specific pattern
but it is more difficult to see. In fact one should first compute A! = 1- A 0

and then start to deduce the other polynomials. For the case k = 8 we find
that

120=(15x8)/1,

35=( 5x7)/1,

140 = (35 x 8)/2,

21=( 6x7)/2.

56= (21 x 8)/3

To see this more clearly consider the case k = 10. From (23), after
factorization, we have

A,(t)=

t6

A_{t\ = - - (; - 1)3(6t-7)
! \ ~ l 3! ,.

k

2

TABLE II

A,

4 -13(3;-4)

14

-T! (1-1)(41- 5)

.5

~(t-1)(1512 -351-t- 21)
1:

14 ,
-ft-l ~.o2' ,. .
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Now let us note the following:

560 = (56 x 10)/1,

189 = (21 x 9)/1,

48 = (6 x 8)/1,

720 = (216 x 10)/3,

84 = (28 x 9)/3,

945 = (189 x 10)/2,

216 = (48 x 9)/2,

28 = (7 x 8)/2,

210 = (84 x 10)/4.

From (4), (9), (14), (19), and (24) we see that the coefficients (from left to
right) involved in these recurrence formulas follow the pattern

k

2 2!/1 ! 1!/(0! I!)

4 4!/2! 3!/(1! l!) 2!/(0! 2!)

6 6!/3! 5!/(2! l!) 4!/( l! 2!) 3!/(0! 3!)

8 8!/4! 7!/(3! 1!) 6!/(2! 2!) 5!j(1! 3!) 4! (O! 4!)

10 10!/5! 9!/(4! l!) 8!/(3! 2!) 7!/(2! 3!) 6!(1! 4!) 5!/(0! 5!)

Finally, it is clear that (5), (10), (15), (20), and (25) follow a simple
pattern.

4. ApPLICAno>..;

As an interesting application, the above splines constitute a new class of
numerical quadrature rules since they allow us to approximate

eX

f(x) = I f'(t) dt
"a

in [a,b], (26)

an integral which appears often in statistics when computing distributions.
Notice that (4), applied to the function f given in (26), is the classical

trapezoidal rule, while (9), (14), (19), and (24) are the classical trapezoidal
rules with end correction.

We applied all of the above formula on

f(x) = rdt/(t+ 1) in [1,5].
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TABLE III

lV k:2 4 6 8 La

6.9E-02 6.1E-03 6.2E-04 6.8E-05 7.6E-06
5 8.2E-03 9.7E-05 1.5£-06 2.5E-08 4.5E-1O

10 2.5E-03 8.9E-06 4.2E-08 :.3£-10 1.3£-12
15 1.2E-03 2.0£-06 4.5£-09 1.2E-ll 3.2E-14

20 6.8£-04 6.8E-07 8.8E-1O 1.4E-12 2.7E p 15
25 4.4E-04 2.9E-07 2.5E-10 2.5E-13 6,OE:'16
30 3.1E-04 1.5E-07 8.6E-11 ii.OE-It, 5.7£-16

For each case we first computed Si (i = 1, 2, ... , }/+ 1) by the corresponding
recurrence formula. Then we computed the value of s(x) at N equally
spaced points in each subinterval [Xi' xi+J (i=O, 1, ... , N) by its corre­
sponding expression. [For instance, for k = 8, (19) is first used, then (17). J
This was done on a personal computer using a simple Basic program in
double precision. When dealing with polynomials, nested form may reduce
the effect of round-off errors. [a4x4 + a3x3 + G2X2+ a I x + ao in nested form
is (((a4x+a3)x+a2)x+al)x+aO']

Table III of bounds for the actual error shows the method to be effective
and confirms the theoretical results.

5. CO'JcLusrm;

We have studied the existence and uniqueness of a ciass of splines or
even degree that match the derivatives at the knots to a given order.,
obtaining direct simple formulas. Error estimates were derived which.
together with the numerical results, showed the method to be efficient.
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