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A class of splines of even degree k£ =2x and continuity order ¥ that match the
derivatives up to order & at the knots of a uniform partition are studied for
x=1,2,3,4, and 5. The simple direct formulas obtained can be applied o quad-
ratures. £ 1990 Academic Press, Inc.

1. INTRODUCTION

Recently, El Tarazi and Sallam [37] have constructed an interpolatory
quartic spline which matches the first and second derivatives of a given
function at the knots.

In this paper we extend that work, studying a class of splines of even
degree k =2y and continuity order ¥ that match the derivatives up to the
order x at the knots of a uniform partition for x=1, 2, 3, 4, and 5. The
reason for restricting ourselves to even-degree splines is that the formulas
obtained are explicit. There are no linear systems to solve.

in Section 2 we study the construction, existence, uniqueness, and error
bounds for the proposed splines. In Section 3 some conjectures relating
these different splines are stated. Finally, in Secticn 4 we apply these splines
to quadratures. Both theory and numerical results show the method to be
efficient.

2. SpLINES OF DEGREE 2, 4, 6, 8, anp 10

We construct here a class of interpolating splines of degree %, for
k=2,4,6,8, and 10. &, error estimates for these splines are also represen-
ted. Since all cases considered are similar, details are given only for the case
of degree k =6.
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Let {x,i=0,1,.,N+1} be a uniform partition of [0,1]. Set
h=x,,,—x;fori=0,1,.., N. (g stands for g")(x,), i=0, 1, .., N+ 1 and
r=0, 1, ...) We have the following cases:

2.1. Spline of Degree 2

Given the real numbers f; (i=0,1,.., N+1) and f,, there exists a
unique spline s(x)e %'[0, 1] of degree 2 (a polynomial of degree 2 in each
subinterval [x;, x;,]) such that

i=f (i=0,1,..,N+1)

1
50=fo- h

For afixed ie {0, 1, .., N}, set x=x,+ 24, 0<r< 1. In [x;, x;, (] the spline
s(x) of degree 2 satisfying (1) is
s(x)=s5;A0(t) + 5, 1 A(t) + R[] Ax(2) (2)
with
AO(t)z_t2+1a Al(t)ztza AZ(t)x—t2+tv (3)

where s, (i=1, 2, ..., N+ 1) are easily computed throughout the recurrence
formula

2=s;, _+s)=h(fi_1+ f)) So=fo- (4)

In this case we have, for any xe [0, 1], the error bounds

r— r41) h'_’fr | 3
IS( ”(x)_f( 1)(x)|s(4)1~rr! (z_zr)' If( )Iiac-5 r=03 1
- w (3) ®
I56) = fCoN < 57 17 e

provided fe%>[0, 1]. (Details are given for the similar case k =6.)

2.2. Spline of Degree 4

This particular case is included, with élightly different assumptions (f .

is given instead of fy, ), in the work of El Tarazi and Sallam [3]. Given
the real numbers f/, f” (i=0, 1, .., N+ 1), and f,, there exists a unique
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¢

spline s{x}e %*[0, 1] of degree 4 (a polynomial of degree 4 in each subia-
terval [,‘,-,. i+1]) such that

Forafixedie {0, 1,.., Nj.set x=x,+th, 0<:< 1. In {x, x,, ] the spline
s{x} of degree 4 satisfying (6) is

s(x)=s5;40(1) + 5, A FRLEASD + f AT+ 22 Ay (T

with
Ao(ty= 3'—4r +1
A(t)= -3+ 45
A= 208 —38 +1¢ {8}

where 5; (i=1,2, .., N+ 1) are easily computed throughout the recurrence
formula

1205, +5)=6h(fl_+ [+ B = F) o=Jo-

[+

I

@
——
L)

We have in this case, for any xe [0, 1], the error bounds

h47r
R O R AR EY IS VL. =012

(‘4)2—r|(4 2,}' oL

sl <75 f‘f"
provided fe%°[0, 1]. (Details are given for the similar case k¥ = 6.}

2.3. Spline of Degree 6

Given the real numbers f;, f/, /) (i=0,1,.., N+ 1), and f,, there
exists a unique spline s(x)e €°[0, 1] of degree 6 (a polynomial of degres
6 in each subinterval [x,, x,,]) such that

si=f s/ =f/. sP= i3 (i=0,1, ., N+1}

Jios i
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Indeed we can express any polynomial p(¢) in [0, 1] of degree 6 in terms
of its values at 0 and 1, its first and second derivatives at 0 and 1, and its
third derivative at 0,
p(t)= podo(t) + p1 A(t) + poA (1) + prAs(1)
+ po Ay(1)+ pi As(t) + p§ Ae(2).

To determine Ay, A,,.., A, we write the above equality for
p(t)=1,1 ¢, .., 1% We get the linear system

Ao+ 4, =1
A +A,+ A, =
A, +245+24,+ 245 =1’
A, +34, + 645+645=1°
A +44, +124; =
A, +54, +204; =1
A, +64, +304, =15

Solving this simple system we get

Ag(t)= —10£5+ 2415 — 15¢* + 1
A(r)y=10¢°—24r° + 15¢*

Ay(t)= —6r°4+ 15— 101" + ¢

A(t)= —4t* +9r —5¢ (12)
Alt)=(-3t° +8 —61*+12))2

As()=( * =25 +Y2

Ag(t)=( —15 +3 —3r*+13)6.

Now for a fixed i€ {0, 1, .., N}, set x=x,+1th, 0<t<1. In [x,, x,_,] the
spline s(x) of degree 6 satisfying (11) is

s(x)=s;40(t)+ 5, 1 A (F)+ R f7 A1) + fi1 1 A3(8)]
+ R A) + fi  As(D ]+ R f P A4(0). (13)

We have a similar expression for s(x) in [x;_,, x;]. Since s(x)e€°[0, 1]
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oy

o,

so0 sPx ) =5x7) (i=1,2,.,N) and s¥(x . to the
recurrence formula
120(—s,_ 4+ 3) =60h(f;_ + f)+ 1202 f7 . = £1")
RS S so=So. (14)
In order to give an error bound for the above spline ¢ nd its derivatives,

we recall first the following result due to Ciarlet of ¢

Let ge € [0, ] be given. Let p,,, , be the unigue Hefm‘te interpola-
tion polynomial of degree 2m— 1 that matches g and its first m— i
derivatives g'" at 0 and A Then

_HIx(h=)1""'G

le" () ’ — r=0,1,..,m; O0<x<h, (15,1
Fl(2m —2r)!
where
le Y =g (x)— pil_ (%) and  G= max |g®(x). (152}

The bounds in (15.1) are best possible for » =0 only. For some values of
m (m=2 and m=13) optimal error bounds on the derivatives ¢"{x} do
exist (see Birkhoff and Priver [1], or Varma and Howell [41).

Now we go back to our spline. Notice that is [x;, x,_ ;] {{=0, L, ..,
s'{x) is the Hermite interpolation polynomial of degree 5 matching 7.
F* at x; and x,,,, so for any xe[x;, x,,,] we have [using {151} wi
m=3, g_f:, and ps=s"]

1 Al(x—x;) )P
57— f () < i Qégx A /7%, r=0,123
F — k).
It follows then that
. Wihgi—q) " L

" Py = [T ()] < ——— e, 7=0123

(hd J f ( ): ~ r! (6—2}’)! N b s
with ¢ = {x — x,)/h. Therefore for any xe [0, 1] we have

h6—-r 7

[elr vy fir+ ) ”f Yl r=10 2,3 (153
[ AT ( )I\(A\;;_,. '(6 2’” dxs s 5,1,4, \;

provided fe%7[0, 1]. Integrating over [0, x] {for r =0), using 5(0) = (0},
we obtain

IsCa) =)<
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2.4. Spline of Degree 8

Given the real numbers f;, 1", f, f® (i=0,1, .., N+1), and f,, there
exists a unique spline s(x)e €*[0, 1] of degree 8 (a polynomial of degree
8 in each subinterval [x;, x;,,]) such that

si=fl,  st=fr, sW=fO $Wof®  (=0,1,.,N+1)
so=fo- (16)

For a fixed ie {0, 1,.., N}, set x=x,+th, 0<¢<l. In [x;, x,,,], the
spline s(x) of degree 8 satisfying (16) is

s(x)=s;40(8) + 5,14 ()+ AL AN0) + fi 1 A5(0)]
+RPLf A+ £ 1 As()]
+ PSP A(6)+ 12 A(0) ]+ P A4(1) (17)
with
Ao(t)=35¢5—120¢7 + 14015 — 561° + 1

A (1) = — 3565 + 12017 — 1405 + 561°

A(t)y= 2068 —7017 +84:5—~35¢°+1

Ay(t)y= 158 —5017 +5615—21¢°

A1)= (1068 —3617 +45¢5—20¢° + 12))2 (18)
As(t)= (=564 +1617 —17t° +61°)/2

Ag)y=( 4% —1517 +20:5—10¢° + 1*)/6

A,()=( & =317 +3:° —1)/6

Ag()=( # =4 +6r° —4r+1%))24,

where s; (i=1,2,.., N+ 1) are easily computed using the recurrence
formula

1680(—s; 1 +s;) =840h(f/_, + f/) + 180R*(f;" , — /i)
+200°(f2 + )+ RED =), so=Sfo. (19)

We have in this case, for any xe [0, 1], the error bounds

8—r

(r+1) _ flr+ 1)
s (x)—f ()l < (4)4*’,~! (8 —2r)!

e, r=0,1,2,3,4
(20)

—fx)I< 1fh

44 8!
provided fe%°[0, 1]. (Details are given for the similar case k=6.)
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2.5. Spline of Degree 10

Given the real numbers f;, f, £, /', f3 (i=0,1,., N+ 1), and f£,,

there exists a unique spline s(x)e %> [0 1} of degree iﬂ {a poiynomiai <f
degree 10 in each subinterval [x;, x;_ 1) such that

PR P 3) {4y __ 4} 5y _ ¢ '
si=fLsi=f" s f( S,»'—f}-q’._ s = { - N+ 1
Forafixedie {0,1,.., N}, set x=x,+ 12, 0<1< 1. In {x;, x,, ] the spline

£{x) of degree 10 satlsfymg (21) is

s(x)=s5,45(1)+ 5, A () ALSf AL+ £ A4.0)]
+ LS Au(1) + £ 1 As(1)]
+RLSPA6(0)+ 121 47(0)]

LA + 112 AT+ RSP A (1) {22}
with
Ay(1)= —1261'° + 560¢° — 94513 + 720:7 — 210:° +
Ad)y= 126:'°—560f° + 9451 — 720¢7 + 210:°
A{ty= —70¢'° 4+ 315/ — 5401% + 42017 — 126:° + ¢
A= —56r'%4245/° —405:%+300s7 —84:°
Ay(r)= (351" 4 1601° — 280¢% + 22417 — 7015 + 12)2
Adr)=( 217° 907 + 1455 — 104:7 + 28152 (23}
Agty= (=151 4+70° — 12668+ 105:7 — 35:%+1%)/6

~J
I
NS
ey
4}
N

A= ( —61'° +25/° —39¢

Agty=( =51 424/ —45:% +4017 — 15+ )24
Ag(t)= ( 1 470 +e6rt —47 %24
Ao{t)=( —1t° +5° —10 +1077 -5+ 1°)/120,

where s, {(i=1, 2, .., N+ 1) are easily computed throughout the recurrence
formuia

30240( —s, , +s,)=15120h(f_, +f,-’)
+ 3360h%( — 1) + 42047 f;,,. + £

+30R4(f f<4> FRFS 4 SO0 so=fo (24}
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We have in this case, for any x ¢ [0, 1], the error bounds

) hl()fr
s ) = SIS g gy M e 170 123,43
0 (25)
1500) = f < g5y 1/ e

provided fe#''{0, 1]. (Details are given for the similar case k=6.)

3. CONJECTURES

Consider Table I obtained from (3), (8), and (12) after factorization. It
is easily seen that the polynomials A, 4,, 44, and A4 follow a specific
simple pattern according to which, for case k=8, we should expect
Agy, 45, Ay, A, and Ag to be

Ag(t)= (1= 1)*(35* + 2083 + 102 + 41 + 1)
t

Ax(0) = (1= 1)*20° + 10 + 41 + 1)
2

1]
Ay(1)=5; (1= D107 + 41 +1)

3

A6(t)=% (1—1)%4t+1)

A= -1y

TABLE I
k AO Az A4 AG
t
2 —(—1)t+1) _F(t_l)
4 (1—1)232+2+1) %(I—1)2(2t+1) %(r—l)z

) ' . 2 i 3
6 —(=1’(10° +6+3r+1) — (1= 160 +30+ 1) ~%(l—1)’(3t+1) ——;—'(t—l)s




EVEN-DEGREE SPLINES

y.
<N
i

which is correct. The factor (35¢*+20s* + 104° + 4t + 1} is deduced from
(10 + 612+ 3¢+1) as follows: 4=1+3, 10=14+3+6, 20=1+3+
6+ 10, and 35=1+4+10+20. Now from (”}., {8}, (12), and (18}, after
factorization, we have Table Il. 4, 45, A5, and A4, follow a specific pa?i I
but it is more difficult to see. In fact one should first compute 4, =1 — 4,
and then start to deduce the other polynomials. For the case & =8 we find
that

120=(15x8)/1,  140=(35x8)2,  56=(21 x8)/3
35={ 5x7)/1,  2l=( 6x7)2.

To see this more clearly consider the case A=10. From (23}, after
factorization, we have

6
t \
A= G (1= 1)°(1261* — S60° + 9450 — 7201 + 210) = 1 A,(1)
I .
A;(:‘;:—T,([—l)l( 561° — 18912 + 2161 —
e ) .
A= 31— 1)(217 4814 28)
t6
Aty=—=(1—1)(61=T7)
3
f5
Aoty = E(’—-l)“
TABLE 1
K A, A A< A
2 -
4 —P(3r—4) il—!(f—n
4 4
6 10— 247+ 15) ~%(r—1)(4t—5) %45433

/5 s 3

8 —(350—1207° < 1401—56) = (r—1)(15~35t+21) —=(1—1/(51—6}
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Now let us note the following:
560 = (56 x 10)/1, 945 = (189 x 10)/2,
189 = (21 x 9)/1, 216 = (48 x 9)/2,
48 = (6 x 8)/1, 28 = (7 x 8)/2,
720 = (216 x 10)/3, 210 = (84 x 10)/4.
84 = (28 x9)/3,

From (4), (9), (14), (19), and (24) we see that the coefficients (from left to
right) involved in these recurrence formulas follow the pattern

k

2 21 1001

4 421 3y 20121

6 643! SUQII) 4(1121) 310131

§ 841 TYGITY)  6Y(2121)  SY(1131)  41(0!4))

10 10150 94r1l)  8I/(3121)  TY(2!3!1)  6l(1141) 5105

Finally, it is clear that (5), (10), (15), (20), and (25) follow a simple
pattern.

4. APPLICATION

As an interesting application, the above splines constitute a new class of
numerical quadrature rules since they allow us to approximate

~X

Jx)=\| f(t)dr  in[ab], (26)

Ya

an integral which appears often in statistics when computing distributions.
Notice that (4), applied to the function f given in (26), is the classical
trapezoidal rule, while (9), (14), (19), and (24) are the classical trapezoidal
rules with end correction.
We applied all of the above formula on

»

f(x)lex dijf(t+1)  in[L 5]
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TABLE I
& k2 4 5 8 i
1 6.9E-02 6.1E-03 6.2E-04
5 8.2E-03 9.7E-05 1.5E-06
ig 2.5E-03 8.9E-G6 4.2E-08
15 i.2E-03 2.0E-06 4.5E-09
20 6.8E-04 6.8E-G7 8.8E-10
25 $.4E-04 2.9E-07 2.5E-10
30 -G4 1.5E-07 8.6E-11

For each case we first computed s, (i=1,2,.. N+ 1} b
recurrence formula. Then we computed the value of s{x) at N equally
spaced points in each subinterval [x,, x; ;1 (i=0, I, .., N) by its corre-
sponding expression. [ For instance, for k=8, {19} is ﬁ"bt used, then {17).7
This was done on a personal computer using a simple Basic program in
double precision. When dealing with polvnom"ais nested form may reduc
the effect of round-off errors. [a,x* + a3 x’ + a,x* + a, x + a, in nested form
is ({({asx+as)x+ay)x+a,)x+ay.]

Table II1 of bounds for the actual error shows the method to be effective
and confirms the theoretical results.

v the corresponding

ﬂ)

5. CoNCLUSION

We have studied the existence and uniqueness of a ciass of splines of
even degree that match the derivatives at the knots tc a given order,
obtaining direct simple formulas. Error estimates were derived which
together with the numerical results, showed the method to be efficient.
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